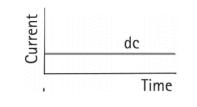
Summary for Written Test 2 Sounds & Circuits 2021 VI.1

Creative Technology – M2: Smart Environments.

According to test information for Test 2 "Circuits".


Information taken from lectures, assignments, references and books.

Lecture 4 (slides 37-66)

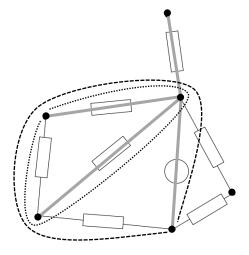
Lectore 4 (sinces 3/-	.00)				
Electrical systems	Analog	All physical quantities like temperature or force can be represented by currents or voltages.			
		Fulfils only one function, dedicated and thus fast.			
	Digital	Smaller and faster tha	n analog electronics.		
		All quantities must be	digitized (AD conversion).		
		One circuit per functio	n but cheap.		
	Software	Can be updated \rightarrow large	ge flexibility		
		Relatively slow and m	ore power consuming, cannot do all functions digitally.		
		Requires suitable envi	ronment (computer).		
The smartphone	The smartphone Analog Transmitter, receiver of GSM, GPS, Bluetooth,				
		Microphone and audio amplifier.			
		Power management, 1	Power management, touchscreen, and image sensor (camera).		
	Digital	Dedicated communication protocols (GSM, UMTS, GPS, LTE) .			
		Calculation resources.			
	Software	OS, GUI, file manager	nent, applications, control of digital and analog parts.		
Analogies	Certain mathe	ertain mathematical relations hold in more than one domain. nderstanding in one domain can help understanding other domains.			
	Understandin				
	For example: Electrons in a circuit \leftrightarrow Water flow in pipes.				
Charge	Q, Q(t), q(t)				
	Positive and negative; charges of same sign repel, opposites attract.				
	Unit: coulomb (C), elementary charge: $q = -1.6 * 10^{-19} C$.				
	Electrons carry the negative charges, they can move "freely" through the material.				
Analogy of Charge	Electrical dom	nain:	<u>Hydraulic domain</u> :		
	Charge: Q, q(t	t) in <i>C</i> .	Volume: $V, V(t)$ in m^3 .		
	The amount o	f charge.	The amount of water molecules.		

Current	I, I(t), i, i(t) Current is the flow of charge, the amount of charge per unit of time. Unit: A (Ampère), $A = C/s$. Positive current flows from $+ \rightarrow -$, electrons flow $- \rightarrow +$. If I is constant: $I = \frac{Q}{t}$ $Q = I * t$ If I is dynamic: $i(t) = \frac{dq(t)}{dt} = \frac{d}{dt}q(t)$		
	dt	dt	
Analogy of current	Electrical domain:	<u>Hydraulic domain</u> :	
	Current: $I, i(t)$ in $A(C/s)$	Flow: $\phi(t)$ in m^3/s	
	The amount of charge per time unit.	The amount of water molecules per time unit.	
Voltage	V, U, v, u, v(t), u(t) Potential difference between two point Unit: $V(Volt), V = J/C$ $J = Joc$ Electric potential \leftrightarrow Voltage		
Analogy of voltage	Electrical domain:	Hydraulic domain:	
	Voltage: $V, v(t)$ in V .	Pressure: $p(t)$ in <i>Pa</i> .	
	The pressure on the charge carrier.	The force on the amount of water molecules.	
	A voltage (difference) is the quantity t	that gets electrons moving. It is a driving force/push.	
DC (Direct Current)	Static situation, can apply to all quantities (charge, current, voltage). Denoted by capitals: Charge Q , Voltage V , Current I .		
AC (Alternating Current)	Dynamic situation, can apply to all qu Donated by small letters: Charge $q(t)$		

DC and AC

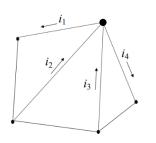
Current ac

Lecture 5					
Electric circuit	An electric device tha	t provides a pat	h for electrical current (electro	ns) to flow.	
Conductor	Charge can easily flow through conductors, they are represented by lines. (•				
	They correspond to w	vires or PCB lines	s in physical circuits.		
	The voltage between	both ends will b	e zero regards less of the curre	ent.	
	Ideal conductor \leftrightarrow she	ort circuit			
	Circuit points that are	connected with	n ideal conductors can be consi	dered a single note.	
Resistance	R				
	Unit: Ω (Ohm), $R = V$	/A			
	In a material:	$R = \rho * \frac{l}{A}$	ho= material property		
			l = length of material (m)		
			$A =$ area of material (m^2)		
	Resistors can be phys	ical component	s (resistors), practical values: 0	$.1\Omega - 1G\Omega$.	
Ohm's law	v = i * R				
	Relation between voltage and current for an ideal resistor.				
	V = I * R	$I = \frac{V}{R}$	$R = \frac{V}{I}$		
Voltage source	Delivers a sustained fl Maintains a difference			→ DC voltage source AC voltage source	
Ideal voltage source	Ū.	•	endent of the delivered current → +. In theory: shorting sourc		
Ideal current source	The current trough th In theory: open clamp		dependent of the voltage at th age.	e terminals.	


Example: a solar cell, more sun will deliver more current but not more voltage.

Electrical networks

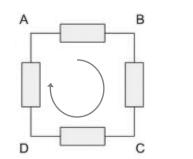
A network is a set of interconnected elements.


With:

- Nodal points / nodes
- ---- Branches
- -- Loop
- •••• Mesh (encloses no other loops)

1^{st} Kirchhoff law (K.C.L) $\sum i_{node} = 0$

The current law or node rode of Kirchhoff (charge conservation).


 $-i_1 + i_2 + i_3 - i_4 = 0$ Approaching is +

Leaving is –

 \sum incoming currents $-\sum$ outgoing currents = 0 \sum incoming currents $= \sum$ outgoing currents

 2^{nd} Kirchhoff law (K.V.L) $\sum v_{loop} = 0$

The voltage law or loop rule of Kirchhoff (energy conservation law).

 $V_{AB} + V_{BC} + V_{CD} + V_{DA} = 0$

 $\sum voltage \ rises - \sum voltage \ drops = 0$ $\sum voltage \ rises = \sum voltage \ drops$

Notation of polarities UK: Uses arrows towards highest potential, source is a rise of potential, resistors a drop USA / Europe: + denotes highest potential, - denotes lowest potential, source is a rise of potential, resistors a drop. Connecting

Series

A single pathway circuit for electron flow.

Current through all elements is the same.

Voltage gets divided over elements.

 $V_{source} = V_{R1} + V_{R2} + V_{R3}$

 $I = I_{R1} = I_{R2} = I_{R3}$

A break anywhere in the circuit results in an open circuit \rightarrow no electron flow. Ohm's law holds per resistor and for the whole circuit:

$$V_{source} = I_{source} * R_{tot}$$

$$V_{R1} = I_{source} * R_{1}$$

$$V_{R2} = I_{source} * R_{2}$$

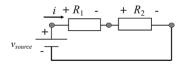
$$V_{R3} = I_{source} * R_{3}$$

$$i_{source} + I_{source} + I_{sour$$

Parallel2 or more elements are in parallel if they are connected to the same nodes.Current gets divided over parallel branches. $I = I_{R1} + I_{R2} + I_{R3}$ Voltage through all elements is the same. $V_{source} = V_{R1} = V_{R2} = V_{R3}$ A break in the path of a resistor \rightarrow current can still flow in other paths.

Ohm's law holds per resistor and for the whole circuit:

$$V_{source} = I_{source} * R_{tot}$$

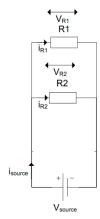

$$V_{R1} = I_{R1} * R_{1}$$

$$V_{R2} = I_{R2} * R_{2}$$

$$V_{R3} = I_{R3} * R_{3}$$

$$V_{R3} = I_{R3} * R_{3}$$

Series $R_s = R_1 + R_2$



Parallel

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$$

For example (2 resistors):

$$R_p = \frac{R_1 * R_2}{R_1 + R_2}$$

P = V * IPower in circuits Power, Unit: W (Watt), W = J/s $P = \frac{V^2}{R} \qquad P = I^2 * R$ For use with resistors: Voltage divider A common circuit that can create a desired output I voltage (V_{out}) smaller or equal to the input voltage (V_{in}). V_{in} (Analysis: $V_{in} = V_{R1} + V_{R2} = V_{R1} + V_{out}$ K.V.L. K.C.L $I = I_{R1} = I_{R2}$ $V_{out} = I * R_2$ Ohm's law $R_{tot} = R_1 + R_2$ Total resistance $V_{out} = \frac{R_2}{R_1 + R_2} * V_{in}$ Output voltage $H = \frac{R_2}{R_1 + R_2}$ H (dotted line) $V_{out} = H * V_{in}$ with $0 \le H \le 1$ System formula

R₁

 R_2

V_{out}

Lecture 6

AC signals

Dynamic and changes polarities.

Making the basic periodic signals, for example the square wave:

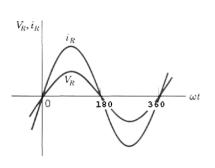
Using the sine wave again:

$$s(t) = \operatorname{Asin}(2\pi ft)$$

$$v(t) = v_p \sin(2\pi ft) = v_p \sin(\omega t)$$

$$i(t) = i_p \sin(2\pi ft) = i_p \sin(\omega t)$$
with the angular frequency $\omega = 2\pi f = \frac{2\pi}{T}$

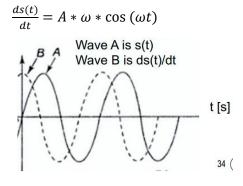
Sine wave in R


$$V = i * R$$

Alternating voltage \rightarrow alternating current

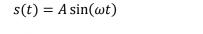
 $i = \frac{v}{R}$

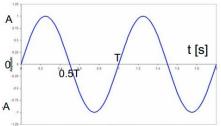
 $v = v_p \sin(\omega t)$ $i = i_p \sin(\omega t)$ $i = \frac{v_p}{R} \sin(\omega t)$


i and *v* are in phase, (o-degree phase shift).

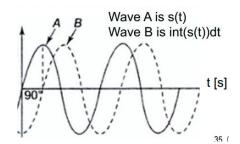
Differentiation	$\frac{d}{dx}(x) = 1$	Integration	$\int 1 dx = x + C$
	$\frac{d}{dx}(ax) = a$		$\int a dx = ax + C$
	$\frac{d}{dx}(x^n) = nx^{n-1}$		$\int x^n dx = rac{x^{n+1}}{n+1} + C$, $n eq -1$
	$\frac{d}{dx}(\sin x) = \cos x$		$\int \sin x dx = \cos x + C$
	$\frac{d}{dx}(\cos x) = -\sin x \ (x)$		$\int \cos x dx = \sin x + C$

Sine waves for EEThree reasons:Natural signals (tides, solar position, year cycle, sunset – sunrise).Basis in signal analysis and system description, only periodic signal
that remains similar in shape after differentiation or integration.
Any periodic signal can be written as a sum of sines (Fourier).


Sine wave Information $i = i_p \sin(\omega t + \phi) \ t \ge 0$ $i_p = \text{amplitude}, \phi = \text{initial phase}$ Integrating or differentiating sine waves can only change amplitude or phase. So *not* the frequency. Differentiating $s(t) = A \sin(\omega t)$



Wave B (derivative) leads wave A


Amplitude of B has changed compared to A

Integrating

$$S(t) = \int s(t)dt = \frac{-A}{\omega}\cos(\omega t) + C$$

Wave B lags wave A.

Amplitude of B has changed compared to wave A.

Possible vertical shift due to C.

Phase shift When $\phi_1 > \phi_2$, signal 1 leads (is in front of) signal 2.

When $\phi_1 < \phi_2$, signal 1 lags (is behind of) signal 2.

Signal s(t)	Math description	ds(t)/dt	$\int s(t)dt$
Square	Zero order (constant), Steep slope at transitions	0, Spikes at transitions of s(t)	First order (linear functions) → triangle
triangle	First order (linear functions)	Zero order (constant) → square wave	Second order (parabola functions)
(co)sine	(co)sine functions	(co)sine, Leads s(t) by п/2 Amplitude change	(co)sine, Lags s(t) by n/2 Amplitude change Possible vert. shift

Summary

Capacitor

A buffer or storage for electric charge Q. Measure in C.

→ Capacitor

Unit: F(Farad), $\frac{A}{V/s} = \frac{A}{V} = F$

Total charge on capacitor is Q. Not 2Q. It does not change, only moves.

Due to charge separation, a voltage V will arise.

The higher the charge \rightarrow the higher the voltage

Linear relationship:

$$Q = C * V \qquad C = \frac{Q}{v} \qquad V = \frac{Q}{c}$$

$$C = \text{capacitance of capacitor}$$
Small voltages give large amounts of charge.
Large capacitors fill up slower than smaller ones.
Capacitance:

$$C = \varepsilon G = \frac{\varepsilon A}{D}$$

$$\varepsilon = \text{Dielectric constant } (F/e), \text{ a property of the isolation medium.}$$

$$d = \text{plate distance in } m$$

$$A = \text{plate area in } m^2$$

$$i, v \text{ relationship:}$$

$$i_C(t) = C \frac{dV_C(t)}{dt}$$
Function
Capacitors tend to stabilise voltage across them.
No infinite high current change is possible.
A capacitator acts as a differentiator for voltage sources.
A capacitator acts as an integrator for current sources.

Sine wave in C

$$i = C \frac{dv}{dt} \qquad i = \frac{1}{c} \int i dt \qquad V_c, i_c$$

$$v = v_p \sin(\omega t) \qquad i = i_p \cos(\omega t)$$

$$i = v_p \omega \sin(\omega t)$$

$$i = v_p \omega \sin\left(\omega t + \frac{1}{2}\pi\right)$$

$$i \text{ and } v \text{ are out of phase, } (i \text{ leads } v \text{ by } \frac{1}{2}\pi \text{ or } 90^\circ).$$

Buffer of magnetic flux linkage.	_ MML Inductor
Unit: <i>H</i> (Henry), $\frac{V}{A/s} = \frac{Vs}{A} = H$	
Maintains motion (flow) \rightarrow Inertia (traagheid).	
	Unit: <i>H</i> (Henry), $\frac{V}{A/s} = \frac{Vs}{A} = H$

Due to a magnetic field a current flow is induced (and vice versa).

Inductor

i, v relationship:

 $V_L(t) = L \frac{di_l(t)}{dt}$

$$V_C(t) = \frac{1}{L} \int v_L(t) \, dt$$

If there is a large L value, then a small current i will give a large voltage v.

Function Inductors tend to stabilize the current though it.

No infinite high voltage change possible.

An inductor acts as an <u>integrator</u> for voltage sources.

Sine wave in L

$$v = L \frac{di}{dt}$$

$$i = \frac{1}{L} \int v dt$$

$$V_L, i_L$$

i and v are out of phase, (i lags v by $\frac{1}{2}\pi$ or 90°).

Overview

Resistance	+ $$ $$ i	v = i * R	$i=\frac{v}{R}$	Ω	Ohm
Capacitance	$+ \underbrace{\frac{v}{- }}_{i}$	$v = \frac{1}{c} \int i dt$	$i = C \frac{dv}{dt}$	F	Farad
Inductance	+	$v = L \frac{di}{dt}$	$i = \frac{1}{L} \int v dt$	Н	Henry