
Summary for Written Test Processing 2020 v1.0 by

Creative Technology – M1: We create identity.

According to subjects mentioned in manual

Introduction to Programming

Processing is a language for electronic arts, new media and visual design. Is a dialect of Java.

Code reads from top to bottom.

A Processing program is called a sketch.

Lines of code end with ;

Start your file with a to initialize your screen. No code before size() or fullscreen()

Basic functions:

background(), stroke(), fill(), noFill(), noStroke(), point(), line(), rect(), ellipse(), rectMode(), ellipseMode()

Basic layout:

When a piece of code is run: Translates code to Java > Compile into Java byte code > Execution as .jar

Variables, Types, Arithmetic

Common basic types:

• byte (small number) Can only store a small number, -128 to 127.

• short (larger number) Can store a larger number, -32,768 to 32,767.

• int (Integer) Can only contain whole numbers. Has a “limited” size.

void setup() {

size(1000,1000)

}

void setup() {

size(1000,1000)

}

void draw() {

rect(500,500,50,50)

}

Runs only once, used to setup the

canvas, create shared data

structures.

Repeats as long as the program runs at the

set framerate (default 60). Draws graphics

and deals with interactions and animation.

Information taken from

lectures, tutorials,

reference and textbook

• float (Floating point) Can be used for number with a floating point aka decimal point. Larger size.

• boolean (true/false) Can only be true or false, useful for control statements. Is not a string.

• char (character) Can store one character. Mostly used for keypresses.

• string (characters) Can store a sequence of characters. Mostly used for text.

Variables need both a type and name. Give ze variables meaningful names and avoid fixed Processing variables.

Write your variables name in camelCase, this is common practise.

Before you can use a variable you it is a good idea initialize it such as:

int Count = 50;

float Cookies = 37.5;

Aside from basic variables Processing has predefined variables which enable access to certain data at ease.

Some predefined types:

• mouseX, mouseY The position of the mouse/cursor on the screen.

• pmouseX, pmouseY The position of the mouse/cursor on the screen of the previous frame.

• width, height Width and height of the current sketch, not the size of the display of the computer.

• keyCode Numerical value of the last key that was pressed.

• keyPressed A function that is called every time a key is pressed. Value will be stored in key.

• mousePressed A function that is called every time the mouse button is pressed.

• mouseButton System variable which is set to the last of the three mouse buttons pressed.

• frameCount Total amount of frame drawn since the program has started.

Arithmetic’s:

For most data types you can use the usual arithmetic operators:

• float +, -,*, / with the usual meaning

• int: +,-,* with the usual meaning.

Division (/) will be integer division. If both the numerator and divisor are integer. (11 / 4 = 2, not 2.75)

Another useful operator is modulo (%), computes the remainder of division.

For other data types these operators may or may not be defined so be careful with using them without checking the

meaning of those operators for those certain data types.

Scopes:

Every pair of curly brackets ({ }) defines a local scope. Scopes can be nested.

Each variable that is declared exists from the point of declaration to the end of the scope.

You cannot use a variable outside of its scope. Declarations outside of any { } are in Global Scope.

Variables in the global scope can be used everywhere (these are called global variables).

It’s good practise to minimize the scope, this is easier to understand and is better for debugging.

This is called an assignment statement

If, If-Else, Booleans

If, if-else:

Within a usual method, all lines of code are executed after each other. Often you want to make these conditional.

You can decide to create two alternatives or even more.

Basic layouts:

The first example will run the code withing the

brackets if the condition in the statement is

met.

In the second examples you execute the first

statement when the condition is met and then

check for other condition is the alternatives.

The third example on the right only moves on if the first condition is met and then

only after the second and then only after the third etc.

Booleans:

Named after George Bool, pioneer of the study of logic. Invented an algebra based on only two values:

true and false.

Example of a boolean variable: boolean isLegalAge= false; Name is “isLegalAge”, initialized to false.

When making complex decisions you often need to combine boolean values.

Boolean operators combine multiple values and expressions and combine them into a resultant boolean value.

Common boolean operators:

• AND (&&) – a AND b - ∧ Evaluates to true if both a and b are true.

• OR (||) - a OR b - ∨ Evaluates to true if A is true or B is true. At least one is true, both could be true.

• NOT (!) - !a - ¬ Evaluates to true only if A is false.

Relational operators (use in combination with Booleans)

• == Equality

• != Inequality

• <= Less then or equal

• < Strictly less

• >= Greater then or equal

• > Strictly greater

if (condition) {

doThis…

}

if (condition) {

doThis…

}

if (condition) {

doThis…

}

else {

doThat…

}

if (condition) {

doThis…

}

else if (condition) {

doThis…

}

else if (condition){

doThat…

}

Else {

doSomething…

}

Loops

While:

Basic layout:

This loop will be repeated as long as the condition is true. If it’s not the loop will stop.

Avoid infinite loops, they can make your program crash or freeze since they fill the memory quickly.

For’s:

Basic layout:

With this layout you can easily repeat certain statement an X number of times by changing the condition for the

counter variable which is used only for counting the number of repeats in this case. You can use the counter to

increase values in the statements per step as well.

The variable name i is also often used instead of counter.

Don’t forget that the predefined method draw() is also a loop. Which uses frames as the counter.

Classes and Methods

Basic layout:

while (condition) {

statements

}

This is the body of the while

for (int counter = 1; counter <=10; counter++) {

statements

}

 Initialization

Condition Update

class Ball {

 float x;

 Ball(float initX){

 x = initX;

}

 }

Attribute

Constructor, with parameters

Called when a ball is

constructed. This is similar to

a setup()

Attributes are given initial

values.

Ball ballA

void setup(){

size(600,600);

ballA = new Ball(100,100,20,color(255,0,0));

}

void draw(){

background(0);

ballA.display();

}

To add behaviour or functions:

Other variables introduced in

this example should be added as

attributes first.

After defining a class (on a new tab/file) you can call and use the class in the main tab/file.

Like so:

To add another ball just add a new variable of type/call Ball: Ball ballB, and repeat the other code as well.

Methods:

Processing has multiple types of methods:

• Event methods, update attributes in response to user events Change attributes void

• Updates methods, update attributes frame to frame Change attributes void

• Display methods, defines what graphical elements are used. Do not change attributes void

• Queries, returns a value that represents the state of the object Do not change attributes non-void

It’s good practise that every class manages its own attributes. This is called encapsulation.

You can/should use the different types of methods for that. For example, make a method that changes the colour of

an element and then call it in the main class instead of changing a global variable and then passing that as a

parameter.

For methods that only compute values you can use a non-void return type.

For example:

void display(){

fill(ballColor);

stroke(0);

ellipse(x,y,ballSize,ballSize);

}

 }

Method, can contain any

regular code.

Declare a variable of type/class Ball

Calls the constructor and passes

parameters.

Is a object of type Ball

Calls the method display() of

object ballA

boolean mouseOverBall() {

boolean isOver = false;

if(pow(mouseX-x,2) + pow(mouseY-y,2) <=

pow(ballSize,2)) { isOver= true; }

return isOver; }

In the example the keyword return is used to return a value, but it also means that that is the end of the method.

Any code inside of the method after return will never be run of executed.

Methods can also use parameters, define them as: void move(float tempMouseX, float tempMouseY){ }

Use these temp variables as if they already contain the data which they will receive as parameter.

In the main tab it can look like this: ballA.move(mouseX,mouseY);

The variables that are passed there are called arguments, the action itself is a method call.

Methods can also be used in the main tab, they do not need to be from a class.

To summarize:

A class is a generic description of attributes and behaviour,

it bundles attributes and methods to update those attributes.

A object is an instant of a class with specific attributes and behaviour,

one for each relevant, interesting useful entity/concept.

Arrays

An array is a data structure, to store more of the same.

All elements of an array must be of the same data type. This means that object can be stored in array’s too.

The elements are stored and accessed in sequence. Counting starts at 0 then continues as usual.

To access the second element you use index 1, since you start from 0.

Basic layout:

The last legal element of a array is length-1 for example: xpos[xpos.length-1] = variable;

You can also pass arrays as parameters.

int [] xpos = new int[50];

int [] ypos = new int [50];

for (int i = 0; i < xpos.length; i++)

{

 xpos[i] = 0;

 ypos[i] = 0;

}

Declares an array of type integer

You can also use int xpos[];

This creates a new array with 50 elements

A common type of for loop iterating

through the elements of the array.

Starts at 0 (so index 1) and goes up to the

length of the array.

Use method length on any array to obtain

the current length.

An common array algorithm:

Dropping the first, moving all other one to the front, adding one to the end.

Keep in mind when to and not to use -1 or just the length. Errors made with this (“off-by-one errors”) are common

and will make some sums incorrect.

You can also declare arrays of objects:

General Information

Primitive types vs Data structures:

Primitive types are types such as int, float, char. Variables of those types always contain a value of that type. They

behave mostly like variables from mathematics.

Data structures are classes, but also arrays, lists etc define data structures. A variable of those types contains a

reference to a data structure, not the data itself. Before you can use these, you must create a data structure and assign

it to them.

See them as just counting money in your hand vs using a bank account.

for (int i = 0; I < xpos.length-1; i++)

{

 xpos[i] = xpos[i+1];

 ypos[i] = ypos[i+1];

}

xpos[xpos.length-1] = mouseX;

ypos[ypos.length-1] = mouseY;

In this case using xpos.length would cause a major

issue since you try to access a element which

doesn’t exit. This would make you program crash.

This is called a “buffer overflow” or “out-of-range”

access. One of the most dangerous mistakes.

You are then accessing memory which doesn’t

belong to your program which may crash your

program or give access to confidential data.

Planet[] planets = new Planet[9]

for (int I =0; i<planets.length; i++){

 planets[i] = new Planet(10*I, 20*I, 40);

}

Planet[] means it’s an array of type Planet

Creates a new array with 9 planets.

Common for loop to iterate through the

array of objects.

Parameters are changed each iteration

Matrixes:

Use push and pop matrix to move the origin to a more convenient place.

For example:

Flowcharts and cell graphs:

You should be able to understand a flow charts of you programs flow.

You should be able to understand a call graph of your method calls:

You should be able to understand a sequence diagram of a sequence of events:

You should be able to understand an object diagram:

pushMatrix();

translate(x,y);

ellipse(0,0,10,10)

…

popMatrix();

Stores current settings and pushes everything to a matrix

Moves origin of coordinate system to current position

Use the new origin for drawing shapes

Restores saved settings and pops the matrix

Common structure of Processing program:

Numerical accuracy:

Avoid comparing floats with == since these calculations are sometimes rounded in a weird way which causes issues

with the calculations and accuracy.

